Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Neurology ; 102(10): e209326, 2024 May.
Article En | MEDLINE | ID: mdl-38669634

BACKGROUND AND OBJECTIVES: Narcolepsy type 1 (NT1) is due to the loss of hypothalamic neurons that produce orexin (ORX), by a suspected immune-mediated process. Rare postmortem studies are available and failed to detect any inflammation in the hypothalamic region, but these brains were collected years after the first symptoms. In vivo studies close to disease onset are lacking. We aimed to explore microglia density in the hypothalamus and thalamus in NT1 compared with controls using [18F]DPA-714 PET and to study in NT1 the relationships between microglia density in the hypothalamus and in other regions of interest (ROIs) with disease duration, severity, and ORX levels. METHODS: Patients with NT1 and controls underwent a standardized clinical evaluation and [18F]DPA-714 PET imaging using a radiolabeled ligand specific to the 18 kDa translocator protein (TSPO). TSPO genotyping determined receptor affinity. Images were processed on peripheral module interface using standard uptake value (SUV) on ROIs: hypothalamus, thalamus, frontal area, cerebellum, and the whole brain. SUV ratios (SUVr) were calculated by normalizing SUV with cerebellum uptake. RESULTS: A total of 41 patients with NT1 (21 adults, 20 children, 10 with recent disease onset <1 year) and 35 controls were included, with no significant difference between groups for [18F]DPA-714 binding (SUV/SUVr) in the hypothalamus and thalamus. Unexpectedly, significantly lower SUVr in the whole brain was found in NT1 compared with controls (0.97 ± 0.06 vs 1.08 ± 0.22, p = 0.04). The same finding between NT1 and controls in the whole brain was observed in those with high or mixed TSPO affinity (p = 0.03 and p = 0.04). Similar trend was observed in the frontal area in NT1 (0.96 ± 0.09 vs 1.09 ± 0.25, p = 0.05). In NT1, no association was found between SUVr in different ROIs and age, disease duration, severity, or ORX levels. DISCUSSION: We found no evidence of in vivo increased microglia density in NT1 compared with controls, even close to disease onset, and even unexpectedly a decrease in the whole brain of these patients. These findings do not support the presence of neuroinflammation in the destruction process of ORX neurons. TRIAL REGISTRATION INFORMATION: ClinicalTrials.org NCT03754348.


Microglia , Narcolepsy , Orexins , Positron-Emission Tomography , Humans , Male , Female , Microglia/metabolism , Narcolepsy/metabolism , Narcolepsy/genetics , Narcolepsy/diagnostic imaging , Orexins/metabolism , Adult , Young Adult , Thalamus/metabolism , Thalamus/diagnostic imaging , Pyrazoles , Hypothalamus/metabolism , Hypothalamus/diagnostic imaging , Hypothalamus/pathology , Severity of Illness Index , Middle Aged , Pyrimidines , Adolescent , Receptors, GABA/metabolism , Receptors, GABA/genetics
2.
Brain ; 147(4): 1321-1330, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38412555

The pathophysiological underpinnings of critically disrupted brain connectomes resulting in coma are poorly understood. Inflammation is potentially an important but still undervalued factor. Here, we present a first-in-human prospective study using the 18-kDa translocator protein (TSPO) radioligand 18F-DPA714 for PET imaging to allow in vivo neuroimmune activation quantification in patients with coma (n = 17) following either anoxia or traumatic brain injuries in comparison with age- and sex-matched controls. Our findings yielded novel evidence of an early inflammatory component predominantly located within key cortical and subcortical brain structures that are putatively implicated in consciousness emergence and maintenance after severe brain injury (i.e. mesocircuit and frontoparietal networks). We observed that traumatic and anoxic patients with coma have distinct neuroimmune activation profiles, both in terms of intensity and spatial distribution. Finally, we demonstrated that both the total amount and specific distribution of PET-measurable neuroinflammation within the brain mesocircuit were associated with the patient's recovery potential. We suggest that our results can be developed for use both as a new neuroprognostication tool and as a promising biometric to guide future clinical trials targeting glial activity very early after severe brain injury.


Brain Injuries , Coma, Post-Head Injury , Humans , Coma/complications , Coma, Post-Head Injury/complications , Prospective Studies , Magnetic Resonance Imaging/methods , Brain/metabolism , Brain Injuries/complications , Hypoxia/complications , Receptors, GABA/metabolism
3.
Front Neurol ; 14: 1189278, 2023.
Article En | MEDLINE | ID: mdl-37588670

The relationship between neuroinflammation and cognition remains uncertain in early Alzheimer's disease (AD). We performed a cross-sectional study to assess how neuroinflammation is related to cognition using TSPO PET imaging and a multi-domain neuropsychological assessment. A standard uptake value ratio (SUVR) analysis was performed to measure [18F]-DPA-714 binding using the cerebellar cortex or the whole brain as a (pseudo)reference region. Among 29 patients with early AD, the pattern of neuroinflammation was heterogeneous and exhibited no correlation with cognition at voxel-wise, regional or whole-brain level. The distribution of the SUVR values was independent of sex, APOE phenotype, early and late onset of symptoms and the presence of cerebral amyloid angiopathy. However, we were able to demonstrate a complex dissociation as some patients with similar PET pattern had opposed neuropsychological profiles while other patients with opposite PET profiles had similar neuropsychological presentation. Further studies are needed to explore how this heterogeneity impacts disease progression.

4.
Mol Imaging Biol ; 25(4): 692-703, 2023 08.
Article En | MEDLINE | ID: mdl-36944798

PURPOSE: NMDA receptors (NMDARs) dysfunction plays a central role in the physiopathology of psychiatric and neurodegenerative disorders whose mechanisms are still poorly understood. The development of a PET (positron emission tomography) tracer able to selectively bind to the NMDARs intra-channel PCP site may make it possible to visualize NMDARs in an open and active state. We describe the in vitro pharmacological characterization of [18F]-fluoroethylnormemantine ([18F]-FNM) and evaluate its ability to localize activated NMDA receptors in a rat preclinical model of excitotoxicity. PROCEDURES: The affinity of the non-radioactive analog for the intra-channel PCP site was determined in a radioligand competition assay using [3H]TCP ([3H]N-(1-[thienyl]cyclohexyl)piperidine) on rat brain homogenates. Selectivity was also investigated by the displacement of specific radioligands targeting various cerebral receptors. In vivo brain lesions were performed using stereotaxic quinolinic acid (QA) injections in the left motor area (M1) of seven Sprague Dawley rats. Each rat was imaged with a microPET/CT camera, 40 min after receiving a dose of 30 MBq + / - 20 of [18F]-FNM, 24 and 72 h after injury. Nine non-injured rats were also imaged using the same protocol. RESULTS: FNM displayed IC50 value of 13.0 ± 8.9 µM in rat forebrain homogenates but also showed significant bindings on opioid receptors. In the frontal and left somatosensory areas, [18F]FNM PET detected a mean of 37% and 41% increase in [18F]FNM uptake (p < 0,0001) 24 and 72 h after QA stereotaxic injection, respectively, compared to the control group. CONCLUSIONS: In spite of FNM's poor affinity for NMDAR PCP site, this study supports the ability of this tracer to track massive activation of NMDARs in neurological diseases.


Brain Injuries , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Rats, Sprague-Dawley , Phencyclidine/metabolism , Brain Injuries/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism
5.
Magn Reson Med ; 89(6): 2281-2294, 2023 06.
Article En | MEDLINE | ID: mdl-36688262

PURPOSE: This work aims to explore the effect of Blood Brain Barrier (BBB) opening using ultrasound combined with microbubbles injection on cerebral blood flow in rats. METHODS: Two groups of n = 5 rats were included in this study. The first group was used to investigate the impact of BBB opening on the Arterial Spin Labeling (ASL) signal, in particular on the arterial transit time (ATT). The second group was used to analyze the spatiotemporal evolution of the change in cerebral blood flow (CBF) over time following BBB opening and validate these results using DSC-MRI. RESULTS: Using pCASL, a decrease in CBF of up to 29 . 6 ± 15 . 1 % $$ 29.6\pm 15.1\% $$ was observed in the target hemisphere, associated with an increase in arterial transit time. The latter was estimated to be 533 ± 121ms $$ 533\pm 12\mathrm{1ms} $$ in the BBB opening impacted regions against 409 ± 93ms $$ 409\pm 93\mathrm{ms} $$ in the contralateral hemisphere. The spatio-temporal analysis of CBF maps indicated a nonlocal hypoperfusion. DSC-MRI measurements were consistent with the obtained results. CONCLUSION: This study provided strong evidence that BBB opening using microbubble intravenous injection induces a transient hypoperfusion. A spatiotemporal analysis of the hypoperfusion changes allows to establish some points of similarity with the cortical spreading depression phenomenon.


Blood-Brain Barrier , Magnetic Resonance Imaging , Rats , Animals , Blood-Brain Barrier/diagnostic imaging , Magnetic Resonance Imaging/methods , Arteries , Ischemia , Cerebrovascular Circulation/physiology , Spin Labels
6.
Cereb Cortex ; 33(5): 2229-2244, 2023 02 20.
Article En | MEDLINE | ID: mdl-35640270

In asymmetric hearing loss (AHL), the normal pattern of contralateral hemispheric dominance for monaural stimulation is modified, with a shift towards the hemisphere ipsilateral to the better ear. The extent of this shift has been shown to relate to sound localization deficits. In this study, we examined whether cochlear implantation to treat postlingual AHL can restore the normal functional pattern of auditory cortical activity and whether this relates to improved sound localization. The auditory cortical activity was found to be lower in the AHL cochlear implanted (AHL-CI) participants. A cortical asymmetry index was calculated and showed that a normal contralateral dominance was restored in the AHL-CI patients for the nonimplanted ear, but not for the ear with the cochlear implant. It was found that the contralateral dominance for the nonimplanted ear strongly correlated with sound localization performance (rho = 0.8, P < 0.05). We conclude that the reorganization of binaural mechanisms in AHL-CI subjects reverses the abnormal lateralization pattern induced by the deafness, and that this leads to improved spatial hearing. Our results suggest that cochlear implantation enables the reconstruction of the cortical mechanisms of spatial selectivity needed for sound localization.


Cochlear Implantation , Cochlear Implants , Deafness , Hearing Loss , Sound Localization , Speech Perception , Humans , Cochlear Implantation/methods , Hearing/physiology , Sound Localization/physiology , Positron-Emission Tomography , Speech Perception/physiology
7.
Eur J Neurosci ; 55(5): 1322-1343, 2022 03.
Article En | MEDLINE | ID: mdl-35083791

Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD.


Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism , Carrier Proteins/metabolism , Humans , Microglia/metabolism , Neuroinflammatory Diseases , Positron-Emission Tomography/methods , Receptors, GABA/metabolism
8.
Front Med (Lausanne) ; 8: 741855, 2021.
Article En | MEDLINE | ID: mdl-35174180

Anti-PDL1 is a monoclonal antibody targeting the programmed death-cell ligand (PD-L1) by blocking the programmed death-cell (PD-1)/PD-L1 axis. It restores the immune system response in several tumours, such as non-small cell lung cancer (NSCLC). Anti-PDL1 or anti-PD1 treatments rely on PD-L1 tumoural expression assessed by immunohistochemistry on biopsy tissue. However, depending on the biopsy extraction site, PD-L1 expression can vary greatly. Non-invasive imaging enables whole-body mapping of PD-L1 sites and could improve the assessment of tumoural PD-L1 expression. METHODS: Pharmacokinetics (PK), biodistribution and dosimetry of a murine anti-PDL1 radiolabelled with zirconium-89, were evaluated in both healthy mice and immunocompetent mice with lung cancer. Preclinical PET (µPET) imaging was used to analyse [89Zr]DFO-Anti-PDL1 distribution in both groups of mice. Non-compartmental (NCA) and compartmental (CA) PK analyses were performed in order to describe PK parameters and assess area under the concentration-time curve (AUC) for dosimetry evaluation in humans. RESULTS: Organ distribution was correctly estimated using PK modelling in both healthy mice and mice with lung cancer. Tumoural uptake occurred within 24 h post-injection of [89Zr]DFO-Anti-PDL1, and the best imaging time was at 48 h according to the signal-to-noise ratio (SNR) and image quality. An in vivo blocking study confirmed that [89Zr]DFO-anti-PDL1 specifically targeted PD-L1 in CMT167 lung tumours in mice. AUC in organs was estimated using a 1-compartment PK model and extrapolated to human (using allometric scaling) in order to estimate the radiation exposure in human. Human-estimated effective dose was 131 µSv/MBq. CONCLUSION: The predicted dosimetry was similar or lower than other antibodies radiolabelled with zirconium-89 for immunoPET imaging.

9.
J Alzheimers Dis ; 73(4): 1607-1614, 2020.
Article En | MEDLINE | ID: mdl-31958082

BACKGROUND: Sporadic cerebral amyloid angiopathy shows progressive amyloid-ß deposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. OBJECTIVE: To investigate whether amyloid load and distribution, assessed by florbetapir positron emission tomography (PET), differs between patients with probable CAA-related intracerebral hemorrhage (CAA-ICH) and mild cognitive impairment due to Alzheimer's disease (MCI-AD). METHODS: We assessed [18F]florbetapir uptake in 15 patients with probable CAA-ICH and 20 patients with MCI-AD patients. Global and regional florbetapir retention were assessed using standard uptake values ratio (SUVr) in region-based and voxel-wise approaches. Visual reading of florbetapir scans was performed for all participants. Group comparisons were performed using univariate and multivariate analysis. RESULTS: Global florbetapir retention was lower in patients with CAA-ICH than MCI-AD (median SUVr, 1.33 [1.21-1.41] versus 1.44 [1.35-1.66]; p = 0.032). In the region-based analysis, regional florbetapir distribution was similar between the two groups. There was a trend for an increased occipital/global ratio in CAA-ICH patients compared to MCI-AD (p = 0.060). In the voxel-wise approach, two clusters, one in parietal regions and the other in temporal regions, had higher uptake in MCI-AD relative to CAA patients. CONCLUSIONS: Patients with CAA-ICH had a lower global florbetapir PET burden than patients with MCI-AD. Relative florbetapir retention in the posterior regions tended to be higher in CAA patients in region-based analysis but was not statistically different between groups. Investigation on differences in amyloid deposits distribution between groups required a fine-grained voxel-wise analysis. In future studies, selective amyloid tracers are needed to differentiate vascular from parenchymal amyloid.


Alzheimer Disease/diagnostic imaging , Aniline Compounds/pharmacokinetics , Cerebral Amyloid Angiopathy/diagnostic imaging , Ethylene Glycols/pharmacokinetics , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Aged , Aged, 80 and over , Body Burden , Cerebral Amyloid Angiopathy/complications , Cognitive Dysfunction/diagnostic imaging , Female , Humans , Image Interpretation, Computer-Assisted , Intracranial Hemorrhages/etiology , Magnetic Resonance Imaging , Male , Middle Aged
10.
Front Med (Lausanne) ; 6: 268, 2019.
Article En | MEDLINE | ID: mdl-31828073

Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, ß-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.

11.
Eur J Clin Microbiol Infect Dis ; 38(9): 1625-1631, 2019 Sep.
Article En | MEDLINE | ID: mdl-31218592

Labelled leucocyte scintigraphy (LS) is regarded as helpful when exploring bone and joint infections. The aim of this study was to evaluate the utility of LS for the diagnosis of chronic periprosthetic joint infections (PJIs) in patients exhibiting arthroplastic loosening. One hundred sixty-eight patients were referred to centres for treatment of complex PJI. One hundred fifty underwent LS using 99mTc-HMPAO (LLS); 18 also underwent anti-granulocyte scintigraphy (AGS) and 13 additional SPECT with tomodensitometry imaging (SPECT-CT). The LS results were compared with bone scan data. For all, the final diagnoses were determined microbiologically; perioperative samples were cultured. LS values were examined, as well as sensitivity by microorganism, anatomical sites, and injected activity. LS results were also evaluated according to the current use of antibiotics or not. The sensitivity, specificity, and positive predictive value of LLS were 72%, 60%, and 80%, respectively. LLS performed better than did AGS. SPECT-CT revealed the accurate locations of infections. The sensitivity of LS was not significantly affected by the causative pathogen or the injected activity. No correlation was evident between the current antibiotic treatment and the LS value. The test was more sensitive for knee (84%) than hip arthroplasty (57%) but was less specific for knee (52% vs. 75%). Sensitivity and specificity of LLS varied by the location of infection bone scan provide no additional value in PJI diagnosis. Current antibiotic treatment seems to have no influence on LS sensitivity as well as labelling leukocyte activity or pathogens responsible for chronic PJI.


Joints/microbiology , Leukocytes/immunology , Prosthesis-Related Infections/diagnosis , Radionuclide Imaging/standards , Aged , Female , Hip Prosthesis/microbiology , Humans , Knee Prosthesis/microbiology , Male , Predictive Value of Tests , Prosthesis-Related Infections/immunology , Prosthesis-Related Infections/microbiology , Radionuclide Imaging/methods , Retrospective Studies , Sensitivity and Specificity , Single Photon Emission Computed Tomography Computed Tomography
12.
Front Med (Lausanne) ; 6: 90, 2019.
Article En | MEDLINE | ID: mdl-31131278

The membrane dopamine transporter (DAT) is involved in a number of brain disorders and its exploration by positron emission tomography (PET) imaging is highly relevant for the early and differential diagnosis, follow-up and treatment assessment of these diseases. A number of carbon-11 and fluor-18 labeled tracers are to date available for this aim, the majority of them being derived from the chemical structure of cocaine. The development of such a tracer, from its conception to its use, is a long process, the expected result being to obtain the best radiopharmaceutical adapted for clinical protocols. In this context, the cocaine derivative (E)-N-(4-fluorobut-2-enyl)2ß-carbomethoxy-3ß-(4'-tolyl)nortropane, or LBT-999, has passed all the required stages of the development that makes it now a highly relevant imaging tool, particularly in the context of Parkinson's disease. This review describes the different steps of the development of LBT-999 which initially came from its non-fluorinated derivative (E)-N-(3-iodoprop-2-enyl)-2-carbomethoxy-3-(4-methylphenyl) nortropane, or PE2I, because of its high promising properties. [18F]LBT-999 has been extensively characterized in rodent and non-human primate models, in which it demonstrated its capability to explore in vivo the DAT localized at the dopaminergic nerve endings as well as at the mesencephalic cell bodies, in physiological conditions. In lesion-induced rat models of Parkinson's disease, [18F]LBT-999 was able to precisely quantify in vivo the dopaminergic neuron loss, and to assess the beneficial effects of therapeutic approaches such as pharmacological treatment and cell transplantation. Finally recent clinical data demonstrated the efficiency of [18F]LBT-999 in the diagnosis of Parkinson's disease.

13.
J Neural Transm (Vienna) ; 126(3): 279-287, 2019 03.
Article En | MEDLINE | ID: mdl-30706197

In patients with Parkinson's disease (PD), abnormal activations of nociceptive brain areas and lowered pain thresholds were reported, probably reflecting a central modification of pain processing. The aim of this study was to investigate the possible correlation between the striatal and extrastriatal dopaminergic system and pain threshold in PD patients. We included 25 PD patients with various intensities of central pain (visual analog scale). Subjective pain threshold (thermotest) and a motor examination (UPDRS III) were performed. Patients underwent SPECT imaging with [123I]-FP-CIT. We analyzed the correlation between [123I]-FP-CIT binding and subjective pain threshold, using a simple linear regression model for striatal uptake and a voxel-based approach for extrastriatal uptake. The covariables were age, sex, duration of PD, and UPDRS motor score. A pain matrix mask was also used to identify clusters in relation with pain matrix. Striatal analysis revealed that [123I]-FP-CIT binding was negatively correlated with age (p = 0.02), duration of PD (p = 0.0002) and UPDRS motor score (p = 0.006), but no correlation with pain threshold was observed. The extrastriatal analysis showed a positive correlation between [123I]-FP-CIT binding and subjective heat pain threshold for the left posterior cingulate cortex (PCC) (p < 0.001) and negative correlations for the right secondary visual cortex (p < 0.001) and left insula (p < 0.001). When applying the pain matrix mask, correlations remained significant only in the left PCC and the left insula. We suggest that pain perception abnormalities in PD are not directly related to striatal dopaminergic dysfunction. Painful sensations may be related to extrastriatal monoaminergic systems.


Brain/diagnostic imaging , Dopamine/metabolism , Pain Threshold/physiology , Pain/physiopathology , Parkinson Disease/complications , Aged , Brain/metabolism , Brain/physiopathology , Female , Humans , Male , Middle Aged , Pain/etiology , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Pilot Projects , Tomography, Emission-Computed, Single-Photon , Tropanes
14.
J Alzheimers Dis ; 65(2): 443-453, 2018.
Article En | MEDLINE | ID: mdl-30056422

BACKGROUND: Anosognosia is a frequent symptom of Alzheimer's disease (AD), but its neural substrates remain in question. OBJECTIVE: In this study, we combined neuroimaging with a neuropsychological evaluation to assess neural substrates of anosognosia. METHODS: We prospectively recruited 30 patients with probable early-stage AD and matched healthy controls. Participants underwent MRI, FDG-PET, and a neuropsychological evaluation that includes an assessment of anosognosia. In the AD group, correlations between the anosognosia score, neuroimaging modalities, and neuropsychological performance were performed. RESULTS: Atrophy and hypometabolism were correlated with the anosognosia score in the left dorsal anterior cingulate cortex. The anosognosia score was also correlated with atrophy of the cerebellar vermis, the left postcentral gyrus, and the right fusiform gyrus. No relation was found between anosognosia and the neuropsychological assessment. DISCUSSION: Structural and metabolic alteration in the dorsal anterior cingulate cortex seems to be associated with a diminution of awareness in patients with early-stage AD.


Agnosia/diagnostic imaging , Agnosia/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Aged , Agnosia/psychology , Alzheimer Disease/psychology , Brain Mapping , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Imaging , Multimodal Imaging , Neuropsychological Tests , Positron-Emission Tomography , Radiopharmaceuticals
15.
Alzheimers Res Ther ; 10(1): 43, 2018 04 25.
Article En | MEDLINE | ID: mdl-29695305

BACKGROUND: Vitamin D deficiency is associated with an increased risk of Alzheimer's disease and increased beta-amyloid (Aß) in animals. Hence we sought to investigate the relationship between plasma 25-hydroxyvitamin D (25(OH)D) and cerebral Aß in older adults with subjective memory complaints. METHODS: This is a secondary analysis of the Multidomain Alzheimer Preventive Trial. Participants were 178 dementia-free individuals aged 70 years or older with data on plasma 25(OH)D and cerebral Aß load assessed by [18F]-florbetapir positron emission tomography. Plasma 25(OH)D was measured at study baseline using a commercially available electro-chemiluminescence competitive binding assay. Standard uptake value ratios (SUVRs) were generated using the cerebellum as a reference. Brain regions assessed included the cortex, anterior cingulate, anterior putamen, caudate, hippocampus, medial orbitofrontal cortex, occipital cortex, parietal cortex, pons, posterior cingulate, posterior putamen, precuneus, semioval centre and temporal cortex. Associations were explored using fully adjusted multiple linear regression models. RESULTS: Participants had a mean (SD) age of 76.2 years (4.4) and 59.6% were female. The mean (SD) plasma 25(OH)D level was 22.4 ng/ml (10.8) and the mean (SD) cortical SUVR was 1.2 (0.2). We did not find any cross-sectional associations (p > 0.05) between baseline 25(OH)D levels and Aß in any of the brain regions studied. CONCLUSIONS: These preliminary results suggest that circulating 25(OH)D is not associated with cerebral Aß in older adults. Further longitudinal studies with the measurement of mid-life vitamin D status are required to explore the relationship between vitamin D and Aß accrual over time, thereby circumventing the shortfalls of a cross-sectional study.


Aging/blood , Aging/pathology , Cerebral Cortex/metabolism , Dementia/diagnosis , Vitamin D/analogs & derivatives , Aged , Aged, 80 and over , Aniline Compounds/metabolism , Cerebral Cortex/diagnostic imaging , Cross-Sectional Studies , Ethylene Glycols/metabolism , Female , Humans , Linear Models , Male , Mental Status and Dementia Tests , Positron-Emission Tomography , Vitamin D/blood
16.
Exp Gerontol ; 108: 226-230, 2018 07 15.
Article En | MEDLINE | ID: mdl-29704641

BACKGROUND: Inflammation promotes amyloidogenesis in animals and markers of inflammation are associated with ß-amyloid (Aß) in humans. Hence, we sought to examine the cross-sectional associations between chronically elevated plasma C reactive protein (CRP) and cortical Aß in 259 non-demented elderly individuals reporting subjective memory complaints from the Multidomain Alzheimer Preventive Trial (MAPT). METHODS: Cortical-to-cerebellar standard uptake value ratios were obtained using [18F] florbetapir positron emission tomography (PET). CRP was measured in plasma using immunoturbidity. Chronically raised CRP was defined as having 2 consecutively high CRP readings (>3 mg/l ≤ 10 mg/l) between study baseline and the 1 year visit (visits were performed at baseline, 6 months, 1 year and then annually). Associations were explored using adjusted multiple linear regression. RESULTS: Chronically raised CRP was found to be inversely associated with cortical Aß (B-coefficient: -0.054, SE: 0.026, p = 0.040) and this association seemed to be specific to apolipoprotein E (Apo E) ε4 carriers (B-coefficient: -0.130, SE: 0.058, p = 0.027). CRP as an isolated reading measured closest to PET scan was also inversely associated with cortical Aß when CRP was treated as a dichotomized variable (high CRP > 3 mg/l ≤ 10 mg/l, B-coefficient: -0.048, SE: 0.023, p = 0.043). CONCLUSIONS: Our preliminary findings suggest that inflammation might be beneficial in the early stages of Alzheimer's disease as the immune systems attempts to combat Aß pathology particularly in ApoE ε4 carriers. Investigating the temporal relationships between cerebral Aß and a panel of inflammatory markers would provide further evidence as to whether chronic inflammation might modulate amyloidogenesis in vivo.


Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Amyloid beta-Peptides/analysis , C-Reactive Protein/analysis , Cerebral Cortex/chemistry , Memory Disorders/physiopathology , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Aniline Compounds/administration & dosage , Apolipoprotein E4/genetics , Cerebellum/chemistry , Cognition , Cross-Sectional Studies , Ethylene Glycols/administration & dosage , Female , Heterozygote , Humans , Inflammation , Linear Models , Male , Memory , Neuropsychological Tests , Positron-Emission Tomography
17.
Nucl Med Biol ; 59: 1-8, 2018 04.
Article En | MEDLINE | ID: mdl-29413751

INTRODUCTION: The aim of this work was to study the biodistribution, metabolism and radiation dosimetry of rats injected with [18F]FNM using PET/CT images. This novel radiotracer targeting NMDA receptor has potential for investigation for neurological and psychiatric diseases. METHODS: Free fraction and stability in fresh human plasma were determined in vitro. PET/CT was performed on anesthetized rats. Organs were identified and 3D volumes of interest (VOIs) were manually drawn on the CT in the center of each organ. Time activity curves (TACs) were created with these VOIs, enabling the calculation of residence times. To confirm these values, ex vivo measurements of organs were performed. Plasma and urine were also collected to study in vivo metabolism. Data was extrapolated to humans, effective doses were estimated using ICRP-60 and ICRP-89 dosimetric models and absorbed doses were estimated using OLINDA/EXM V1.0 and OLINDA/EXM V2.0 (which use weighting factors from ICRP-103 to do the calculations). RESULTS: The [18F]FNM was stable in human plasma and the diffusible free fraction was 53%. As with memantine, this tracer is poorly metabolized in vivo. Ex vivo distributions validated PET/CT data as well as demonstrating a decrease of radiotracer uptake in the brain due to anesthesia. Total effective dose was around 6.11 µSv/MBq and 4.65 µSv/MBq for female and male human dosimetric models, respectively. CONCLUSIONS: This study shows that the presented compound exhibits stability in plasma and plasma protein binding very similar to memantine. Its dosimetry shows that it is suitable for use in humans due to a low total effective dose compared to other PET radiotracers.


Memantine/analogs & derivatives , Positron Emission Tomography Computed Tomography , Whole Body Imaging , Animals , Blood Proteins/metabolism , Drug Stability , Female , Humans , Memantine/chemical synthesis , Memantine/metabolism , Memantine/pharmacokinetics , Radiometry , Rats , Rats, Sprague-Dawley , Tissue Distribution
18.
Stem Cell Res Ther ; 8(1): 253, 2017 Nov 07.
Article En | MEDLINE | ID: mdl-29116017

BACKGROUND: The adult brain is unable to regenerate itself sufficiently after large injuries. Therefore, hopes rely on therapies using neural stem cell or biomaterial transplantation to sustain brain reconstruction. The aim of the present study was to evaluate the improvement in sensorimotor recovery brought about by human primary adult neural stem cells (hNSCs) in combination with bio-implants. METHODS: hNSCs were pre-seeded on implants micropatterned for neurite guidance and inserted intracerebrally 2 weeks after a primary motor cortex lesion in rats. Long-term behaviour was significantly improved after hNSC implants versus cell engraftment in the grip strength test. MRI and immunohistological studies were conducted to elucidate the underlying mechanisms of neuro-implant integration. RESULTS: hNSC implants promoted tissue reconstruction and limited hemispheric atrophy and glial scar expansion. After 3 months, grafted hNSCs were detected on implants and expressed mature neuronal markers (NeuN, MAP2, SMI312). They also migrated over a short distance to the reconstructed tissues and to the peri-lesional tissues, where 26% integrated as mature neurons. Newly formed host neural progenitors (nestin, DCX) colonized the implants, notably in the presence of hNSCs, and participated in tissue reconstruction. The microstructured bio-implants sustained the guided maturation of both grafted hNSCs and endogenous progenitors. CONCLUSIONS: These immunohistological results are coherent with and could explain the late improvement observed in sensorimotor recovery. These findings provide novel insights into the regenerative potential of primary adult hNSCs combined with microstructured implants.


Cell- and Tissue-Based Therapy/methods , Neural Stem Cells/physiology , Neural Stem Cells/transplantation , Regeneration/physiology , Cell Differentiation/physiology , Doublecortin Protein , Humans , Tissue Engineering
19.
Front Med (Lausanne) ; 4: 173, 2017.
Article En | MEDLINE | ID: mdl-29164115

Fatigue is a common symptom in the elderly and has also been associated with impaired cognition in older adults. Hence, we sought to explore the cross-sectional relationship between fatigue and cerebral ß-amyloid (Aß) in 269 elderly individuals reporting subjective memory complaints from the Multidomain Alzheimer Preventive Trial. Standard uptake value ratios (SUVRs) were generated by [18F] florbetapir positron emission tomography (PET) using the cerebellum as a reference. Cortical-to-cerebellar SUVRs (cortical-SUVRs) were obtained using the mean signal from the frontal cortex, temporal cortex, parietal cortex, precuneus, anterior cingulate, and posterior cingulate. Other brain regions independently assessed were the anterior cingulate, anterior putamen, caudate, hippocampus, medial orbitofrontal cortex, occipital cortex, parietal cortex, pons, posterior cingulate, posterior putamen, precuneus, semioval center, and temporal cortex. Fatigue was defined according to two questions retrieved from the Center for Epidemiological Studies-Depression scale. Chronic fatigue was defined as meeting fatigue criteria at two consecutive clinical visits 6 months apart between study baseline and 1 year (visits were performed at baseline, 6 months and 1 year then annually). Cross-sectional associations between fatigue variables and cerebral Aß were explored using fully adjusted multiple linear regression models. We found no statistically significant cross-sectional associations between fatigue assessed at the clinical visit closest to PET and Aß in any brain region. Similarly, chronic fatigue was not significantly associated with Aß load. Sensitivity analysis in subjects with a Clinical Dementia Rating of 0.5 showed that fatigue reported at the clinical visit closest to PET was, however, weakly associated with increased Aß in the hippocampus (B-coefficient: 0.07, 95% CI: 0.01, 0.12, p = 0.016). These preliminary results suggest that fatigue might be associated with Aß in brain regions associated with Alzheimer's disease in subjects in the early stages of disease.

20.
PLoS One ; 12(9): e0184630, 2017.
Article En | MEDLINE | ID: mdl-28926581

INTRODUCTION: Cell transplantation is an innovative therapeutic approach after brain injury to compensate for tissue damage. To have real-time longitudinal monitoring of intracerebrally grafted cells, we explored the feasibility of a molecular imaging approach using thymidine kinase HSV1-TK gene encoding and [18F]FHBG as a reporter probe to image enzyme expression. METHODS: A stable neuronal cell line expressing HSV1-TK was developed with an optimised mammalian expression vector to ensure long-term transgene expression. After [18F]FHBG incubation under defined parameters, calibration ranges from 1 X 104 to 3 X 106 Neuro2A-TK cells were analysed by gamma counter or by PET-camera. In parallel, grafting with different quantities of [18F]FHBG prelabelled Neuro2A-TK cells was carried out in a rat brain injury model induced by stereotaxic injection of malonate toxin. Image acquisition of the rats was then performed with PET/CT camera to study the [18F]FHBG signal of transplanted cells in vivo. RESULTS: Under the optimised incubation conditions, [18F]FHBG cell uptake rate was around 2.52%. In-vitro calibration range analysis shows a clear linear correlation between the number of cells and the signal intensity. The PET signal emitted into rat brain correlated well with the number of cells injected and the number of surviving grafted cells was recorded via the in-vitro calibration range. PET/CT acquisitions also allowed validation of the stereotaxic injection procedure. Technique sensitivity was evaluated under 5 X 104 grafted cells in vivo. No [18F]FHBG or [18F]metabolite release was observed showing a stable cell uptake even 2 h post-graft. CONCLUSION: The development of this kind of approach will allow grafting to be controlled and ensure longitudinal follow-up of cell viability and biodistribution after intracerebral injection.


Brain Injuries/diagnostic imaging , Genetic Vectors/metabolism , Herpesvirus 1, Human/genetics , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/metabolism , Thymidine Kinase/genetics , Animals , Brain/diagnostic imaging , Brain Injuries/pathology , Cell Line , Cell Transplantation , Disease Models, Animal , Fluorine Radioisotopes/chemistry , Genetic Vectors/genetics , Guanine/analogs & derivatives , Guanine/chemical synthesis , Guanine/metabolism , Humans , Mice , Radiopharmaceuticals/chemical synthesis , Rats , Rats, Sprague-Dawley , Thymidine Kinase/metabolism
...